

Developing A Renewable Energy-based Off-Grid Electrification Master Plan for Remote Islands of Vanuatu along the Example of Four Islands

Peter Johnston Dr Herbert Wade John Salong **Review Workshop** Meteo Complex Conference Room Port Vila, Tuesday 14 June 2016

Session 3: Renewable Energy Resources & Technology Options

Only four islands visited. Representative of remote Vanuatu?

Two tasks:

- 1) Preliminary Design for the 4 islands
- 2) 'Masterplan' for remote off-grid locations

Six reports:

- 1) Inception Report (April)
- 2) Site visits & household surveys
- 3) RE resources & suitable technologies
- 4) Preliminary technical design
- 5) Institutional arrangement & financing
- 6) 'Master Plan' and Final Report

All (soon) available for download at DropBox

How to measure available renewable energy resource?

Data accurate & suitable for project design?

Value compared to other uses of the resource?

Accessible to location with energy need?

Transport to power plant?

Landowners willing to sell or provide access?

Susceptible to cyclone damage?

Suitable for small-scale rural electricity generation?

Solar versus wind

Copra/coconut oil for biofuel

Biomass, hydro, wind, copra

Biomass, coconut oil

Biomass, coconut, hydro

microhydro, coconuts, seawave

Geothermal, seawave, ocean thermal: NO

Vanuatu's solar and wind energy resource

Solar energy: good throughout Vanuatu

Indicative only, depends on cloud cover, tree shading, season, etc.

High energy input 10am-4 pm

Wind energy: OK but <u>very</u> site specific

Broadly favourable (6 m/s) (Aneityum good)

Very site specific: 20% less wind \rightarrow 73% less energy

6 wind monitoring stations: but where are the data?

Vanuatu's Biofuel Resource

Copra oil:

< 10% of land under coconut trees but excellent resource on some islands

Poor data by island on:

- Available resource
- Quantity economical to harvest
- Relative value of CNO versus fuel locally

Mini- Micro-hydro:

- Good technical potential for run-of-river (Often large seasonal variation)
- Water flow assessed at only a few sites
- Very vulnerable to damage during cyclone passage (Flow can be 100-1000 times normal)
- Source often far from village (therefore expensive)

Biomass:

Stream near Anelghowat, Aneityum

- Substantial potential from plantation waste when trees mature
- No resource measurement since 2000
- Land disputes hamper development

Small-scale Renewable Energy Potential

	Solar	Wind	Biofuel	Microhydro
Emae	Yes	?	In 7+ years?	No
Makira	Yes	?	No	No
Mataso	Yes	?	No	No
Aneityum	Yes	Yes	No	Possibly but

Criteria for Preliminary Technical Designs

- 1) Climate Change and Natural Disaster Resilience
- 2) Consistency with Utilities Regulatory Authority Decisions (e.g. AC service and house wiring; user fees)
- 3) Consistency with Government of Vanuatu Regulations (e.g. battery disposal)
- 4) Component Reliability, Availability, Standardization & Capacity for Local O&M
- 5) Consistency with Government of Vanuatu Energy Sector Policies (e.g. Updated NERM: 2016-2030)
- 6) PV (and forthcoming) Guidelines: Sustainable Energy Industry Association of the Pacific Islands
- 7) Consistency with Electricity Demand Patterns (expected initial kWh/m & likely growth)
- 8) Lifetime Cost (e.g. higher initial cost \rightarrow lower long-term costs & improved sustainability)

Suitable energy technology depends on energy demand:

Newly electrified houses highly unlikely to consume more than rural HHs now on-grid:

- Tanna average: 0.6 kWh/hh/day (2002) and 1.1 kWh (2013)
- Malekula average: 0.6 kWh/hh/day (2002) and 0.7 kWh (2013)
- Port Olry biofuel: <0.5 kWh/hh/day (2010)
- Santo newly grid connected late 2015-early 2016): 4 communities average about 1.2 kWh

Likely to be < 1kWh/day with slow growth

and the pattern of energy demand:

Suitable energy technology also depends on who pays:

It is assumed that

- Initial investment costs mostly from GoV or donor
- Customer pays some of installation costs
- Customer pays O&M costs (including component replacement)

on customer's the Willingness and Ability to Pay:

- Varies considerably but often too low for mini-grid and even SHS
- for some HHs, electricity is low priority and pico-solar PV is sufficient

and on community size, density, geography:

- Sparsely populated \rightarrow individual home system
- Larger, compact community \rightarrow mini-grid (maybe)

Tangkiu Tumas

Four reports available from DoE this week?

Soon online at DoE website?

Comments welcome to help us improve the study (but as soon as possible) Peter Johnston Johnston@unwired.com.fj Supplementary Slides if questions arise

Coconut-based Biofuel *

Potential Advantages

- Similar to diesel: relatively simple to operate
- Local employment & cash income
- Continuous local supply of copra
- Lower imports of diesel fuel
- Relatively scalable
- Reduced pollutants compared to diesel fuel

Potential Disadvantages

- Copra supply sensitive to price changes
- More maintenance than diesel system
- Requires skills in oil production and in electricity generation and distribution
- Requires drying & milling infrastructure
- Variable fuel quality depending on copra drying, milling, filtering
- Restricted to communities where mini-grid is practical

R	e	SC	Jľ	'C	e
					\sim

lacksquare

Widely available in Vanuatu, particularly in north and central islands; less applicable in Torba

* For CNO. CME (esterified) is similar but more complicated, requiring coconut oil processing

Solar PV

Potential Advantages	Potential Disadvantages	Resource
 Highly scalar/modular; suited to wide range of demand Low maintenance Suited to individual homes or buildings and mini-grids. 	 Intermittent Battery storage expensive Battery life limited, <u>especially</u> if over-discharged Requires shade free access to sunlight between at least 9am and 3pm Substantial land area needed for community scale 	 Energy input limited to daylight hours Some seasonal variation Good resource in unshaded locations throughout Vanuatu
	IIIStallations	

Micro-hydropower

Potential Advantages	Potential Disadvantages	Resource
 No fuel imports Reliable; low maintenance Continuous supply if flow is adequate 	 Water flows seasonal; may require backup (battery) Not easily scalable Site specific design required Can be destroyed during extreme flows, highly susceptible to cyclone damage High capital costs per kW Usually restricted to communities where mini-grid is practical 	 Flow monitoring required over several years

Small Scale Windpower

Potential Advantages		Potential Disadvantages	Resource	
•	Scalable Can be suited to individual homes or buildings and mini-grids.	 Intermittent, requires battery storage or backup Can be damaged/destroyed by high winds (highly susceptible to cyclone damage) 	 Very site specific Wide seasonal variation in wind speed and available energy 50% higher wind speed → 3.4 x more energy in wind 	
•	For one supplier, repair and maintenance available from New Caledonia	 Limited local O&M skills Expensive; unlike some RE tech, prices not dropping much Little technical development at small scales Few small machines designed for tropical, oceanic environments 		
		 Limited PIC experience with small systems (which has been poor) 		